
URBI: Towards a Universal Robotic Low-Level Programming
Language

Jean-Christophe Baillie
Laboratory of Electrical and Computer Engineering

ENSTA
32 Bd Victor 75015 Paris France
jean-christophe.baillie@ensta.fr

Abstract— The growing diversity and complexity of existing
robotic devices like humanoids, animal-like robots or wheeled
robots, lead to the development of several incompatible software
interfaces to control these robots. We believe that there is a need
for a standard which could be universal, powerful and easy to
use. The open source project URBI, a Universal Robotic Body
Interface, aims at providing the ground for such a standard. It is
based on a client/server architecture where the server is running
on the robot and accessed by the client, on the robot or remotely
via TCP/IP. The URBI language is a scripted language used by
the client and capable of controlling the joints of the robot or
access its sensors, camera, speakers or any accessible part of the
machine. We present in this article an introduction to URBI and
we describe how URBI differs from currently existing solutions.
As an example making use of URBI-specific features, we present
a simple perturbative approach to walk pattern generation, with
URBI running on a ERS7 Aibo robot.

Index Terms— Control Architecture and Programming,
Human-Robot Interfaces, Standard, Programming Language,
Aibo

I. INTRODUCTION

Humanoid and animal-like robots are more and more
widespread and made available to researchers. However, each
new robot is coming with its own programming language
interface, most of the time forcing researchers to relearn what
they already know. Besides, some of these interfaces, like the
Sony OPEN-R SDK [4] or the low level control architecture
of the HRP-2 humanoid robot, are notably difficult to master.

We have developed URBI, a Universal Robotic Body
Interface, in an attempt to provide the research community
with an open-source standard for robot control and interface,
which would be both powerful and simple to use. URBI
includes a scripted language with some high level capabilities,
used from the client and capable of controlling the joints
of the robot or access its sensors, camera, speakers or any
accessible part of the machine. The main characteristics of
URBI, which make it different from other existing solutions
are:

• The purpose of URBI is to control the low level layer of
the robot. Motors and sensors are directly read and set.
Although complex high level commands can be written
with URBI, the kernel of the system is low level by
essence.

• URBI includes powerful time oriented control mech-
anisms to chain commands, serialize them or build
complex motor trajectories.

• Using a client/server architecture, URBI is designed to
be independent from both the robot and the client system.
It relies on TCP/IP or Inter-Process Communication if
the client and the server are both running on the robot.

• URBI is designed with a constant care for simplicity.
There is no ”philosophy” or ”complex architecture” to
be familiar with. It is understandable in a few minutes
and can be used immediately with a simple telnet client.

Some already existing solutions, like tekkotsu [5] or
player/stage [3], are notably different from URBI. Tekkotsu
is providing a more high level and complex view on robot
control (currently specialized for Aibo robots). Player/stage
shares the client/server architecture of URBI but it is also
providing high level features that are less general than the
URBI approach. Also, player/stage is currently specialized
for wheeled robots.

We will shortly present the client/server architecture used
by URBI and the main characteristics of the language. To
illustrate the capabilities of the language, we will give various
examples and we will show how we can generate a walk
pattern on the Aibo robot, together with a simple perturbation-
based method using the mixing blend mode of URBI to
alter the pattern and have the robot turn. Although these
walk patterns are not to be compared with state of the art
results, they interestingly show some of the features and
expressiveness of the URBI language and their quality and
performances is very acceptable.

In [1] we have detailed several performance benchmarks
on Aibo to conclude that URBI is capable of handling simul-
taneously real-time complex motor control commands (walk
or turn sequences), multiple simultaneous image retrievals at
30fps, stereo sound retrieval, sound streaming and smooth
action/perception feedback loop (head tracking of the ball
in the vision field). This shows that URBI is capable of
sustaining demanding needs and research applications.

URBI Server implementations and libraries are re-
leased under the GNU GPL license, and are cur-
rently freely available at urbi.sourceforge.net. The
URBI language is released under a specific license, see
urbi.sourceforge.net for more details.

II. ARCHITECTURE

URBI is based on a client/server architecture. A URBI
server is running on the robot and a client is sending com-
mands to the server in order to interact with the robot. The
communication channel between the client and the server can
be a TCP/IP connection or direct Inter Process Communica-
tion if the client and the server are both running on the robot.

The robot is described by its devices. Each element of the
robot that can be controlled or each sensor is a device and has
a device name. From a programmer’s point of view, a device
is an object. It has some mandatory methods and variables
and a list of device-specific methods. Everything that can be
done on the robot is done via the devices and the available
methods and variables associated to them.

The main advantage of using the client/server architecture
is the flexibility it allows. The client can be a simple telnet
client or a complex program sending commands over TCP/IP.
This client can run on Linux, Windows or Mac OSX and it can
be programmed in C++, java, python or any language capable
of handling TCP sockets (currently, C++ and Java librairies
are available). For each new robot type, a new server has
to be written (the C++ source code is divided into a kernel
and robot-specific part, making the task relatively easy). Once
this server is running on the robot, it is straightforward to
command the robot, whatever the robot is or how complex
it is, as soon as one knows the list of devices and their
associated methods. This list is supposed to be made available
in the documentation of the server and it is the only robot-
specific piece of information required to know how to control
a previously unknown robot.

The syntax used to access the devices is designed with sim-
plicity in mind. More complex features of the URBI language
are available, and will be described here, but understanding
them remains easy and is an incremental process: it is not
necessary to understand the complex features to use the robot
at a basic level.

Current implementations of URBI include Aibo ERS7,
ERS2xx, HRP-2 humanoid robot (prototype), Webots robot
simulator (Cyberbotics). We plan to release a Pioneer version
in the coming months.

III. URBI LANGUAGE

The working cycle of URBI is to send command from the
client to the server and to receive messages from the server to
the client. Commands can be written directly in a telnet client
on port 54000, where the messages will also be displayed or
using a program and a library (see liburbi on sourceforge).

A. Getting and setting a device value

As we said in the architecture description, each element
of the robot is called a device and has a device name.
For example, in the case of Aibo, here is a short list
of devices: legFL1, neck, camera, speaker, micro,
headsensor, accelX, pawLF, ledF12... To read the
value of a device, the val field is available:

> neck.val;

[036901543:notag] 15.1030265089

The message returned is composed of a first part between
brackets displaying a timestamp in milliseconds (from the
start of the robot) and a command tag. In this case, the
command tag is notag, since no tag has been specified
with the command. The tag can be specified before a ’:’,
preceding the command. With the command tag, it is possible
to retrieve the associated message later, possibly in a flow of
other messages from the server:

> mytag: neck.val;
[041307845:mytag] 15.0040114317

This tagging feature is an essential part of URBI and the
URBI C++ library, where callback functions can be associated
to any tag enabling asynchronous message handling.

The second part of the message is the response of the
server. In the case of our example, it gives the value of the
Aibo neck device val field, which is the position of the neck
motor in degrees. The val field is available with any device.
The type of data returned depends on the device: for example,
camera devices return binary data (see [1] for more details
on binary transfers in URBI).

Symmetrically, the val field can also be used to set a
particular device value. If the device is a motor, it is going to
move to the specified value. In the case of a LED, this will
switch it to the corresponding illumination (between 0 and
1):

> motoron; // to activate the motors
> headPan.val = 15;ledF1.val = 0.6;

B. Modificators

Modificators are a particularity of URBI. The value speci-
fied by a val field assignment command is normally reached
as quickly as the hardware of the robot allows it. It is however
possible to control the speed and other movement parameters
using modificators.

The following example commands the robot to reach the
value 80 degrees for the motor device headPan in 4500ms
and the value 40 degrees for headTilt with a speed of 12.5
degrees per seconds:

> headPan.val = 80 time:4500;
> headTilt.val = 40 speed:12.5;

The speed or time modificators are always positive
numbers. It is possible to specify a speed without giving a
targeted final value by setting the desired value to infinity
(inf) or minus infinity (-inf). For example, in the case of
a wheeled robot, this controls the right wheel speed, in the
”positive” direction:

> wheelR.val = inf speed:120;

Another interesting modificator is accel whose meaning
is to control the acceleration.

One of the most interesting modificator is sin, followed
by a time period and coupled with the ampli modificator,
which makes the assigned variable oscillate around the value

with the specified period and in a sinusoidal way with the
given amplitude. Additionally, the phase can be controlled by
the phase modificator:

> neck.val=45 sin:400 ampli:20 phase:pi/2;

We will make a great use of this modificator to design
walk patterns by superimposing several sinusoidal profiles.
Note that a ”sin-modified” assignment command never ter-
minates, except if it is coupled with a timeout modificator:
this timeout modificator ensures that the command will be
terminated after a given time limit is reached:

> wheelR.val = 150 speed:120 timeout:2000;

This command means that the value 150 must be reached
at speed 120. After 2000ms the command will stop, even if
the targeted value has not been reached.

Interestingly, modificators can be variables whose value
might change during the command execution, reflecting on the
command execution. Complex interleaved assignments can be
made by this mean.

An important point about modificators is that it is not only
available to set devices but for any kind of variable (variables
of a device or global variables). Let’s consider the following
example:

> myvariable = 0,
> myvariable = 50 time:10000,
> myvariable,
[001410040:notag] 2.45471445
> myvariable,
[001412020:notag] 12.35471445
> myvariable,
[001442120:notag] 50.00000000

The first affectation sets the variable to zero and the second
one commands the variable to reach the value 50 in 10
seconds. When the value of myvariable is checked over
time, it is evolving from 0 to 50 during this time interval.
This is a unique and powerful feature of URBI compared to
other existing languages and which makes it a fundamentally
asynchronous and time-oriented language. It allows to create
a dynamics for parameters, useful in many situations like, for
example, in the design of a walk sequence for a legged robot.

C. Serial and parallel commands

One key feature of URBI is the ability to process com-
mands in a serial or parallel way.

When two commands are separated by the ”&” operator,
they will be executed in parallel. In addition, they will start
at exactly the same time:

> headPan.val = 15 & headTilt.val = 30;

This will move the head pan and tilt together, with both
motors starting at the same time.

In the same way, it is possible to serialize commands by
separating them with a pipe. In that case, the second command
will start just after the first one is finished, with no time gap.

> headPan.val = 15 | headTilt.val = 30;

This will move the head pan to 15 degrees and only when
this value has been reached, and just after, it will start to
move the headTilt motor.

Two commands separated by a semicolon have almost the
same time semantics as the serial ”|”: the second will start
after the end of the first, but the time gap between the end
of the first and the beginning of the second is not specified.
This is close to the standard semantics of C or C++. Most of
the time, URBI commands will be separated by semicolons.

Finally, two commands can be separated by a colon. In that
case, the time semantics is close to the parallel operator ”&”,
except that the two commands will not necessarily start at the
same time. The meaning of a colon terminated command is
simply to start the command as soon as possible. In particular,
as soon as the command is in the receiving buffer of the
server, it will be executed, whereas with ”&”, the chain of
commands must be integrally received before execution.

The following relationships represent those time dependen-
cies:

a;b : b.start >= a.end
a,b : b.start >= a.start
a&b : b.start == a.start
a|b : b.start == a.end

The operator priority is the following: ; , & |
Technically speaking, the consequence of those different

operators is that commands are not stored in a pile in the
URBI internal structures, but in a tree. More details on the
practical implementation of the URBI kernel can be found on
urbi.sourceforge.net.

These time sequencing capabilities are another specificity
of URBI and are very important features to design and chain
complex motor commands or behaviors.

D. Loops, conditions, event catching

Several control structures are available, like the clas-
sical ”for”, ”while” and ”if then else”. Some
new control structures like loop, which is equiva-
lent to while (true), or loopn (n) equivalent to
for(i=0;i<n;i++) are also provided for convenience.
The syntax of for, while and if is the same as in C.
”for &” is a parallel implementation of ”for” which will
starts every iteration at the same time. ”for |”, ”while |”
and ”at &” are also available. See III-E for an example.

As a specificity of URBI, event catching control structures
like whenever, at and wait are also available:

The instruction ”at (test) command” will execute the
command only once at the moment when the test becomes
true. It is possible to set a hysteresis threshold associated to
the test so that the test has to be true n times before it can
trigger the command. This is done with the tilde separator in
the test and it is called a soft test. The following example, for
Aibo, let the head move in diagonals with smooth movements,
except when an object is detected in the 25cm short range:

period = 2500;

at (distanceNear.val > 25 ˜ 3)
scanning: loop {
{ headTilt.val = 90 smooth:period |

headTilt.val = -90 smooth:period }
&
{ headPan.val = 90 smooth:period |

headPan.val = -90 smooth:period }
}

else
stop scanning;

In this example, the hysteresis threshold is set to 3, which
means that the test must be true 3 times before it can trigger
the loop command. The meaning of the else part is
symmetrically identical. The stop command, followed by
a tag name, means that any command with this tag will be
stopped. This is used here to stop the head sweeping. Note
how the serial and parallel operators are used to specify the
head movement.

The instruction ”whenever (test) command” will
execute the command as long as the test is true. When the
test becomes false, the command is not restarted once it is
finished and the whenever instruction silently waits for the
test to become true again. The semantics is close to while,
except that the instruction never terminates: both ”at” and
”whenever” are run in the background, they return but they
do not terminate.

The instruction ”wait (test)” is blocking until the
test becomes true. Another usage of this instruction is
”wait (tps)”, where tps is a number. In that case, the
instruction will do nothing but lasts during tps milliseconds.

E. Multiplexing

Another key feature of URBI is its capability to perform
multiplexing of commands. The URBI server running on the
robot is a multi client server. This means that it is always
possible that two contradictory commands are sent to the
server, from two different clients. For example, what should
be done if one client wants the neck device to be set to 20
degrees while the other one requests a value of -20?

Six strategies are available in URBI:

• [normal]: The last command received is executed on top
of others (default)

• [discard]: Ignore and erase any conflicting command
• [cancel]: A conflicting command replaces any existing

command
• [queue]: Queue the commands and execute them one

after the other
• [mix]: Mix conflicting commands by averaging the in-

stantaneous values
• [add]: Mix conflicting commands by adding the instan-

taneous values

Each strategy can be selected via the parameterized blend
instruction. For example, the following code calculates the av-
erage value of an array tab by setting the receiving variable

m to the mix mode and performing a parallel affectation of
all the array elements to m:

blend[mix] m;
for &(i=0;i<10;i++)
m = tab[i];

Of course, one of the main interests of the mix and add
modes is to aggregate several conflicting motor commands,
as we will see in the examples below. In the case of a sound
playing device, setting the blending strategy to mix or add
enables the robot to play several sounds at the same time,
instead of queuing them.

F. Other language elements

Several other elements of the language are available,
like the capacity to group devices into virtual devices and
propagate commands along the device hierarchy, function
definition, binary types, flags, static variables and files. We
will not present those elements here, but extensive details can
be found in [1], [2].

IV. CODE EXAMPLES ON AIBO

URBI, which is a command script language, is normally
supposed to be used together with a client program written
in C++ or Java, which will handle all the image processing
and cognitive part of the robot behavior. However, it is
possible to write quite complex and useful programs fully
in URBI, without the use of an external client. To illustrate
this point and some of the capabilities of the language, we
present here a set of simple examples performing interesting
action/perception loops on Aibo robots.

A. Ball Tracking Head

The perception part in this example is limited to detecting
a red ball in the image. This is done in the Aibo ver-
sion of the URBI server by constantly setting the variables
camera.ballx and camera.bally to the ball position
in the image (between 0 and 1), and −1 otherwise. The action
part of the program is to follow the ball when the robot sees
it and search for it with circular head movements otherwise:

whenever (camera.ballx != -1) {
headPan.val = headPan.val +

camera.xfov * (0.5 - camera.ballx) &
headTilt.val = headTilt.val +

camera.yfov * (0.5 - camera.bally)
};

at & (camera.ballx == -1 ˜ 500ms)
scan : {
headPan.valn = 0.5 sin:4000 ampli:0.5 &
headTilt.valn= 0.5 cos:4000 ampli:0.5

};

at (camera.ballx != -1) stop scan;

The valn field is a normalized equivalent to val, based
on the device min and max range.

”Ball Tracking Head” is a typical example given with the
Sony OPENR SDK. The URBI version is comparatively much

simpler to understand and requires only ten lines of code in
URBI, compared to 600 lines for the OPENR version. The
performances are comparable to the native OPENR version.
The structure of the program is easy to grasp by reading the
code and we expect URBI programs to be much easier to
maintain than OPENR versions.

B. Mirroring

This simple program mirrors the right-front leg (RF) to the
left-front leg (LF):

legRF.load = 0;
mirrortag:
loop {

legLF1.val = legRF1.val &
legLF2.val = legRF2.val &
legLF3.val = legRF3.val

},

The load field is available for all motor devices and
controls how tensed the motors are. By setting it to zero,
the motor becomes loose. The loop command is constantly
doing the mirroring for the three joints of the Aibo leg
and can be stopped with stop mirrortag. It is a good
programming habit to prefix with a tag every non-terminating
command, like loop.

C. Stand-up sequence

The following code is performing a simple sequence of
leg movements to have the robot stand up. This is a complex
sequence to program in OPENR, but is done very simply
here by using the serializing and parallelizing capabilities of
URBI, together with time modificators:

{ leg2.val = 90 time:2000 &
leg3.val = 0 time:2000 } |

leg1.val = 90 time:1000 |
leg2.val = 10 time:1000 |

{ leg1.val = -10 time:2000 &
leg3.val = 90 time:2000 }

leg1, leg2 and leg3 are virtual devices grouping all
the level 1, 2 and 3 leg joints.

V. WALK SEQUENCES AND PERTURBATION-BASED

TURNING

Walk sequences are good examples of simple applications
of URBI for Aibo. We present here two types of walks and
a method based on perturbations to make the robot turn.

A. Simple walk sequence

The simplest way of doing a walk sequence with URBI is
to use basic sinusoidal movements on all joints of the legs:

s = 600; // speed, as a period in ms
leg3.val = 130; // knees up
legs.PGain = 24; // P Gain for this walk

legLF1.val = 0 sin:s ampli:30 &
legLF2.valn= 0.1 sin:s ampli:0.2 phase:pi/2 &
legRH1.val = 0 sin:s ampli:30 phase:pi &
legRH2.valn= 0.1 sin:s ampli:0.2 phase:pi/2 &
legLH1.val = 0 sin:s ampli:30 &

legLH2.valn= 0.1 sin:s ampli:0.2 phase:3*pi/2&
legRF1.val = 0 sin:s ampli:30 phase:pi &
legRF2.valn= 0.1 sin:s ampli:0.2 phase:3*pi/2,

All sinusoidal oscillations are identical from one leg to
the other, only the phase shift differs and makes the walk
possible. A slight oscillation on joint 2 is used to reduce the
leg contact on the floor when it is coming back in position
and not pushing.

The effective speed of this simple walk is 16.6cm/s, which
is not fast but still usable in simple cases.

B. Walk sequence based on Fourier decomposition

When motors val fields are set to the add blend mode,
conflicting commands are summed. This feature can be used
to superimpose several sinusoidal motion profiles, possibly
resulting from a Fourier decomposition of a desired joint tra-
jectory. We have done this analysis on the LRV robocup walk
sequence [6], with only two of the main fourier coefficients.
The command to start the corresponding URBI walk is using
the “for &” construct and a set of pre-calculated parameters,
given by the fourier analysis:

for &(x=1;x<=2;x++)
for &(y=1;y<=2;y++)

for &(j=1;j<=3;j++)
for &(d=1;d<=2;d++)
walk: robot.leg[x][y][j]=

lrv.mean[:x][:j]
sin: lrv.s*lrv.coef[:d]
ampli:lrv.amp[:x][:j][:d]
phase:lrv.phase[:x][:y][:j][:d],

The colon before the index variables makes them static,
which is necessary in the case of a “for &” construct
applied to non terminating commands like the sinusoidal
assignment because the values of the modificators are con-
stantly reevaluated and the index value would change. The
variables robot.leg[x][y][j] are arrays of aliases used
to conveniently refer to the leg joints in the loops. See [2] for
more details about static variables and aliases.

We have measured, on our floor type, a speed of 26cm/s
for the original LRV walk. Our implementation, using only
two Fourier coefficients, gives a comparable speed of 26cm/s
and no visually noticeable difference in the way the walk is
performed.

One interesting feature of URBI is that, as said before, the
values of the different modificators are constantly reevaluated
during the execution of the sinusoidal assignment. This makes
it possible very simply to modify parameters online while
the walk is executing, like changing the speed or amplitude
of the movements. Those parameters can themselves be
controlled by a sinusoidal or linear assignment, allowing walk
acceleration and deceleration.

Of course, to generate a walk sequence, it is always possi-
ble to do some reverse kinematics calculations and send the
corresponding motion profiles instant by instant to URBI, but
the purpose here is to see how acceptable a walk sequence can
be with native URBI sinusoidal commands and compare it to

existing pre-calculated approaches in terms of performances
and simplicity of the code. Our speed measures shows that
the difference in performance is acceptable and the coding
effort is limited.

C. Turning as a result of a perturbation

One interesting idea is to try to make use of the “add”
blending mode to generate a turning behavior while a walk
is performed, using only a perturbative approach. In this
approach, conflicting assignments are sent to the joints on
top of the running walk commands and, therefore, are added
to the current motion profile.

We have designed a sort of ”swing pattern” for the right
and left turning, which makes the robot periodically swing
on the right or on the left while staying immobile, which is
exactly the movement corresponding to a rotation of the body
while the legs are in contact with the ground:

// Turning Right
for &(x=1;x<=2;x++)
for &(y=1;y<=2;y++)
robot.leg[:x][:y][2] = 0

sin:lrv.s
ampli:lrv.turn,

// Turning Left
for &(x=1;x<=2;x++)
for &(y=1;y<=2;y++)
robot.leg[:x][:y][2] = 0

sin:lrv.s
ampli:lrv.turn
phase:pi,

This “swing pattern” makes the robot turn as expected
when it is started on top of a regular walk pattern. The
perturbation affects only the second level joint (controlling
the spacing of the legs from the body). The intensity of the
movement, and the intensity of the turning, can be controlled
with the lrv.turn amplitude. The correct values that work
stand between 0 and 20. This online parameter modification
provided by URBI allow for smooth and easy to implement
online update of the rotation radius. Note that the only
difference between a left and right turning is the relative phase
of the perturbation.

The perturbation will work only if its phase is synchronized
with the regular walk phase. This can be achieved by starting
the two turning set of commands in parallel of the walk
command and setting them to a sleeping state by having
the amplitude equal to zero (for this, it is necessary to dis-
tinguish between lrv.turnleft and lrv.turnright).
The other option is to synchronize a posteriori by prefixing
the turn commands by a wait command on the value of one
of the joints:

wait (robot.leg[1][1][2].val ˜= 0) |
// the turning perturbation command...

The synchronization in that case will be only approximative
since the test is not exactly triggered at the time the value
is reached. The ∼ = test operator is a fuzzy equality test
available in URBI.

The last option to do the synchronization is to use the
getphase modificator, which specifies a given variable to
constantly store the current value of the phase in a sinusoidal
assignment. This variable can be used later to synchronize
other sinusoidal assignments.

This simple perturbation method is not to be compared
to state of the art reverse kinematics based methods, but
shows some of the functionalities of URBI and illustrates
the add blending mode in a practical situation, with the
idea of superimposing motion profiles to get desired results.
It will be further investigated to see other applications and
compare the expressiveness and simplicity of the approach to
its performances.

VI. CONCLUSION

We have presented the URBI language and some examples
to illustrate its capabilities. The primary interest of URBI is
to be a candidate to become a standard for robotic low level
control. Obviously, nothing of what is done with URBI could
not be done with other approaches but we claim that it can
be done more quickly and more efficiently with URBI, and
in a portable way.

Practical applications and use of the current version of
URBI have shown the validity of our approach both in
terms of performance and ease of use. The programs that
we have presented here are just a few lines long and are
easy to maintain, whereas this would certainly require a more
important effort to develop with SDKs like OPEN-R. URBI
is simple to learn and simple to use, it is a low level language
but includes scripting and procedural features that makes it
extendable.

URBI is still in an early stage of development but is already
used on a daily basis in our lab, and other labs working with
Aibo have started to use it. We hope the robotic research
community will find it useful and that this work will help
and contribute to the rapid development of this domain.

ACKNOWLEDGMENTS

We would like to thank Matthieu Nottale for his contribu-
tion to the walk sequence generation and his help on liburbi
design.

REFERENCES

[1] J.C. Baillie. Urbi: Towards a universal robotic body interface. In
Proceedings of the 4th International Conference on Humanoids Robotics,
2004.

[2] J.C. Baillie. Urbi language specification. http://urbi.sourceforge.net,
2005.

[3] Brian Gerkey Richard T. Vaughan and Andrew Howard. On device
abstractions for portable, resuable robot code. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robot Systems, pages
2121–2427, October 2003.

[4] Sony. Open-r sdk for aibo robots, http://www.openr.aibo.com. 2005.
[5] David S. Touretzky and Ethan J. Tira-Thompson. Tekkotsu: a sony aibo

application development framework. The Neuromorphic Engineer, 1.2,
2004.

[6] O. Stasse V. Hugel, P. Blazevic and P. Bonnin. Trot gait design
details for quadrupeds. Technical report, http://www.lrv.uvsq.fr/research/
legged/papers/ tech reports/2003/ 2003 symposium paper.pdf, 2003.

